## SOLUTION to January 2021 exam Financial Econometrics A

## Question A:

Consider the ARCH model given by

$$
\begin{aligned}
x_{t} & =\sigma_{t} z_{t} \\
\sigma_{t}^{2}(\alpha) & =\omega+\alpha x_{t-1}^{2}
\end{aligned}
$$

with $z_{t} t_{v}(0,1)$ distributed, $x_{0}$ fixed and $t=1,2, \ldots, T$. With $v>2$ and $\omega>0$ fixed, the log-likelihood function in terms of $\alpha \geq 0$ is given by

$$
\ell_{T}^{t_{v}}(\alpha)=-\frac{1}{2} \sum_{t=1}^{T}\left(\log \sigma_{t}^{2}(\alpha)+(v+1) \log \left(1+\frac{x_{t}^{2}}{\sigma_{t}^{2}(\alpha)(v-2)}\right)\right) .
$$

As usual with $\alpha$ set to the true value $\alpha=\alpha_{0}$, we set $\sigma_{t}^{2}\left(\alpha_{0}\right)=\sigma_{t}^{2}$.
Question A.1: We wish to find a value for $\alpha, \alpha_{a}$ say such that $x_{t}$ is stationary, weakly mixing and $E\left|x_{t}\right|<\infty$ for $\alpha \in\left[0, \alpha_{a}\right)$ and $v=4$. To do so apply the drift function

$$
\delta(x)=1+|x|,
$$

and use $E\left|z_{t}\right|=\sqrt{2} / 2 \simeq 0.7$ to find $\alpha_{a}$. It follows that $\alpha_{a}>2$. Discuss this by comparing with the $\operatorname{ARCH}(1)$ model where $z_{t}$ are iidN $(0,1)$.

Hint: Recall the inequality that $|a+b|^{\delta}<|a|^{\delta}+|b|^{\delta}$ for $a, b \in \mathbb{R}$ and $\delta \in(0,1)$.

Solution Question A.1: By definition

$$
\begin{aligned}
E\left(\delta\left(x_{t}\right) \mid x_{t-1}=x\right) & =1+\left|\sigma_{t}\right| E\left|z_{t}\right| \\
& =1+\left(\omega+\alpha x^{2}\right)^{1 / 2} E\left|z_{t}\right| \\
& \leq 1+\omega^{1 / 2}+0.7 \alpha^{1 / 2}|x|
\end{aligned}
$$

and hence $\alpha_{a}^{1 / 2} 0.7<1$ or, $\alpha_{a}<(10 / 7)^{2}=2.0408$. Note that if $\sqrt{2 / 2}$ was used all the way instead of the proposed value $0.7, \alpha_{a}=2$.

For the Gaussian case $\alpha_{a}=\pi / 2>1$.

Question A.2: It follows that

$$
S_{T}=\partial \ell_{T}^{t_{v}}(\alpha) /\left.\partial \alpha\right|_{\alpha=\alpha_{0}, v=4}=-\frac{1}{2} \sum_{t=1}^{T} \frac{x_{t-1}^{2}}{\sigma_{t}^{2}} \eta_{t}
$$

with $\eta_{t}$ iid with $E \eta_{t}=0$, and

$$
\eta_{t}=\left(1-5 \frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right)
$$

Argue that $E\left(\frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right)^{2} \leq 1$, and hence that $\sigma_{\eta}^{2}=E \eta_{t}^{2}<\infty$.
Argue that $\gamma=E\left(x_{t-1}^{2} / \sigma_{t}^{2}\right)^{2} \leq 1 / \alpha_{0}^{2}$ for any $\alpha_{0}>0$.

## Solution Question A.2:

It follows that as $\frac{y^{2}}{1+y^{2}} \leq 1$, that

$$
\begin{aligned}
E \eta_{t}^{2} & =1+25 E\left(\frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right)^{2}-10 E\left(\frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right) \\
& \leq 1+25+10
\end{aligned}
$$

Likewise

$$
E\left(x_{t-1}^{4} / \sigma_{t}^{4}\right)=E\left(\frac{x_{t-1}^{2}}{\omega+\alpha_{0} x_{t-1}^{2}}\right)^{2} \leq 1 / \alpha_{0}^{2}
$$

Question A.3: Use Question A. 2 (and A.1) to show that

$$
T^{-1} \sum_{t=1}^{T}\left(\frac{x_{t-1}^{2}}{\sigma_{t}^{2}}\right)^{2} \xrightarrow{P} \gamma .
$$

Next, show that

$$
T^{-1 / 2} S_{T}=-T^{-1 / 2} \frac{1}{2} \sum_{t=1}^{T} \frac{x_{t-1}^{2}}{\sigma_{t}^{2}} \eta_{t} \xrightarrow{D} N\left(0, \gamma \sigma_{\eta}^{2} / 4\right)
$$

for any $\alpha_{0} \in\left(0, \alpha_{a}\right)$. Similarly one can show that if one relaxes $v$ is known,

$$
S_{T}^{v}=\partial \ell_{T}^{t_{v}}(\alpha, v) /\left.\partial v\right|_{\alpha=\alpha_{0}, v=v_{0}}
$$

is asymptotically Gaussian distributed.
Discuss implications of these results and in particular why $\alpha_{0}>0$ is an important assumption.

## Solution Question A.3:

First by standard application of LLN for weakly mixing processes (be precise in reference) as by Question A. $1 x_{t}$ is weakly mixing for $\alpha_{0}<\alpha_{a}$. As $E\left(\frac{x_{t-1}^{2}}{\sigma_{t}^{2}} \eta_{t}\right)=0$, again by standard application of the CLT for weakly mixing processes (be precise in reference) the score converges in distribution.

Implications: Together with regularity conditions on the second and third order derivatives (be precise) of the log-likelihood function implies $\sqrt{T}\left(\hat{\alpha}-\alpha_{0}\right)$ and $\sqrt{T}\left(\hat{v}-v_{0}\right)$ are asymptotically Gaussian. Note that if $\alpha_{0}=0$ this does not (necessarily) hold (may expand here, see also next question).

Question A.4: With a sample of $T=1000$ observations, it follows that the MLE of $v$ and $\alpha$, and corresponding LR test statistics for the hypotheses $H_{v}: v=4$ and $H_{\alpha}: \alpha=0$ are given by:

| MLE | Value | Hypothesis | LR statistic |
| :--- | :--- | :--- | :--- |
| $\hat{v}$ | 4.7 | $H_{v}: v=4$ | $L R(v=4)=2.2$ |
| $\hat{\alpha}$ | 0.06 | $H_{\alpha}: \alpha=0$ | $L R(\alpha=0)=3.1$ |

Discuss if you would reject $H_{v}$ and/or $H_{\alpha}$. Be precise about which asymptotic distribution(s) and quantiles you are applying.

## Solution Question A.4:

Given the results in A.3, would expect LR test for interior points to be asymptotically $\chi_{1}^{2}$ distributed $\left(H_{v}\right)$, while for $H_{\alpha}$ would expect $\frac{1}{2} \chi_{1}^{2}$ (be precise in reference to notes). Specifically:
$H_{v}$ accepted based on $5 \%$ quantile of the $\chi_{1}^{2}$ distribution (3.84) as under the hypothesis $H_{v}$ the $v$ parameter is an interior point.
$H_{\alpha}$ rejected based on the $10 \%$ quantile of the $\chi_{1}^{2}\left(5 \%\right.$ quantile of the $\left.\frac{1}{2} \chi_{1}^{2}\right)$ distribution (2.7) as under $H_{\alpha}, \alpha$ is a boundary point.

## Question B:

In order to introduce a stochastic jump in log-returns $x_{t}$, consider the "JumpARCH" model for $x_{t}$ as given by

$$
x_{t}=\varepsilon_{t}+J_{t}, \quad t=1,2, \ldots ., T .
$$

With the initial values $x_{0}$ and $x_{-1}$ fixed, $\varepsilon_{t}$ is an "ARCH" component as given by

$$
\begin{gathered}
\varepsilon_{t}=\sigma_{t} z_{t} \\
\sigma_{t}^{2}=\omega+\alpha x_{t-1}^{2}, \quad \omega>0, \quad \alpha \geq 0,
\end{gathered}
$$

with $z_{t}$ iid, $\mathrm{N}(0,1)$. Note that it is $x_{t}$ lagged that enters the $\sigma_{t}^{2}$ and not as for a standard ARCH model, $\varepsilon_{t}$ lagged.

Next the $J_{t}$ is a "jump" component which is given by a sum of a random number $s_{t}$ of random $\eta_{t, i}$ variables which are $\operatorname{iidN}(0, \gamma)$, with $\gamma>0$. That is,

$$
J_{t}=\eta_{t, 1}+\ldots+\eta_{t, s_{t}}=\sum_{i=1}^{s_{t}} \eta_{t, i}
$$

with $s_{t}$ stochastic and taking values in 1,2 or 3 . More specifically, $s_{t}$ we consider here the case where $s_{t}$ is given by a 3 -state Markov chain with constant transition probabilities $p_{i j}=P\left(s_{t}=j \mid s_{t-1}=i\right) \in[0,1]$ for $i, j=$ $1,2,3$, such that $\sum_{j=1}^{3} p_{i j}=1$ for $i=1,2,3$.

Throughout, we assume that the processes $\left(z_{t}\right)_{t=1,2, \ldots}$ and $\left(\eta_{t, i}\right)_{t=1,2, \ldots}$ are independent for every $i=1,2,3$, and that the processes $\left(\eta_{t, i}\right)$ and $\left(\eta_{t, j}\right)$ are independent for $i \neq j$. Lastly, we also assume that the Markov chain $\left(s_{t}\right)$ is independent of $\left(z_{t}\right)$ and $\left(\eta_{t, i}\right)$ for every $i=1,2,3$.

Question B.1: State conditions on the transition probabilities $\left(p_{i j}\right)_{i, j=1,2,3}$ which implies that $s_{t}$ is weakly mixing.
Note: You do not have to provide any derivations.
Solution Question B.1:Consider the transition matrix defined by

$$
P=\left(\begin{array}{lll}
p_{11} & p_{21} & p_{31} \\
p_{12} & p_{22} & p_{32} \\
p_{13} & p_{23} & p_{33}
\end{array}\right) .
$$

The Markov chain $\left(s_{t}\right)$ is weakly mixing if for any $i, j=1,2,3$ there exists an $m_{i j} \in \mathbb{N}$ such that $P\left(s_{t+m_{i j}}=i \mid s_{t}=j\right)>0$ and the eigenvalues, $\lambda_{1} \geq$
$\lambda_{2} \geq \lambda_{3}$, of $P$ satisfy that $\lambda_{1}=1$ and $\left|\lambda_{2}\right|<1$ and $\left|\lambda_{3}\right|<1$. In particular, a sufficient condition for weakly mixing is that $p_{i j}>0$ for all $i, j=1,2,3$.

Note in particular that the chain is not necessarily weakly mixing if $p_{11}, p_{22}, p_{33}<1$ and $p_{11}+p_{22}+p_{33}>0:$ A counter example is the case where $p_{12}=p_{21}=1$ and $p_{33} \in(0,1)$.

Question B.2: State the conditional density of $x_{t}$ given $J_{t}$ and $\left(x_{t-1}, \ldots, x_{0}\right)$. That is, give an expression for

$$
f\left(x_{t} \mid J_{t}, x_{t-1}, \ldots, x_{0}\right),
$$

for $t \geq 1$. Use this to give an interpretation of the model for the log-returns $x_{t}$ conditional on $J_{t}$ and past $x_{t}^{\prime}$ s.

Solution Question B.2: Using that $\left(J_{t}, x_{t-1}, \ldots, x_{0}\right)$ and $z_{t}$ are independent, we have that $\varepsilon_{t}\left|\left(J_{t}, x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=} \varepsilon_{t}\right|\left(x_{t-1}\right) \stackrel{d}{=} N\left(0, \sigma_{t}^{2}\right)$. Hence, $x_{t}\left|\left(J_{t}, x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=} \varepsilon_{t}+J_{t}\right|\left(J_{t}, x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=} N\left(J_{t}, \sigma_{t}^{2}\right)$. So we have that

$$
f\left(x_{t} \mid J_{t}, x_{t-1}, \ldots, x_{0}\right)=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} \exp \left(-\frac{\left(x_{t}-J_{t}\right)^{2}}{2 \sigma_{t}^{2}}\right) .
$$

Hence the "Jumps" $J_{t}$, when conditioned upon, may be considered as a change in the level of log-returns.

Question B.3: Here we consider the model without conditioning on the "Jumps" $J_{t}$ but conditional on the value of $s_{t}$ (and lagged $x_{t}^{\prime} \mathrm{s}$ ).

Argue that $J_{t}$ conditional on $s_{t}$ is $N\left(0, \sum_{j=1}^{s_{t}} \gamma\right)$ distributed.
Next, use this to show that for $t \geq 1$ the conditional density of $x_{t}$ given $s_{t}=i$ and $\left(x_{t-1}, \ldots, x_{0}\right)$ is given by
$f\left(x_{t} \mid s_{t}=i, x_{t-1}, \ldots, x_{0}\right)=\frac{1}{\sqrt{2 \pi\left(\sigma_{t}^{2}+i \gamma\right)}} \exp \left(-\frac{x_{t}^{2}}{2\left(\sigma_{t}^{2}+i \gamma\right)}\right), \quad i=1,2,3$.
Give an interpretation of the model in this case.
Solution Question B.3: As $J_{t}$ is independent of $\left(x_{t-1}, \ldots, x_{0}\right), J_{t} \mid\left\{s_{t}=\right.$ $i\},\left(x_{t-1}, \ldots, x_{0}\right)$ is given by $\sum_{j=1}^{i} \eta_{t, j} \stackrel{d}{=} N(0, \gamma i)$. Moreover, $\varepsilon_{t} \mid\left\{s_{t}=i\right\},\left(x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=}$ $\left(\varepsilon_{t} \mid x_{t-1}\right) \stackrel{d}{=} N\left(0, \sigma_{t}^{2}\right)$. Hence by independence of $J_{t}$ and $z_{t}$, we have that

$$
\left.\binom{J_{t}}{\varepsilon_{t}} \right\rvert\,\left\{s_{t}=i\right\},\left(x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=} N_{2}\left(\binom{0}{0},\left(\begin{array}{cc}
\gamma i & 0 \\
0 & \sigma_{t}^{2}
\end{array}\right)\right) .
$$

Hence, using that $x_{t}=J_{t}+\varepsilon_{t}$, we have that $x_{t} \mid\left\{s_{t}=i\right\},\left(x_{t-1}, \ldots, x_{0}\right) \stackrel{d}{=}$ $N\left(0, \gamma i+\sigma_{t}^{2}\right)$, such that
$f\left(x_{t} \mid s_{t}=i, x_{t-1}, \ldots, x_{0}\right)=f\left(x_{t} \mid s_{t}=i, x_{t-1}\right)=\frac{1}{\sqrt{2 \pi\left(\sigma_{t}^{2}+i \gamma\right)}} \exp \left(-\frac{x_{t}^{2}}{2\left(\sigma_{t}^{2}+i \gamma\right)}\right)$.
Hence, the "Jumps", when only conditioned on the state variable $s_{t}$, may be considered as a change in the level of the conditional variance, $V\left(x_{t} \mid s_{t}, x_{t-1}\right)=$ $\sigma_{t}^{2}+s_{t} \gamma$.

Question B.4: Let $\theta=\left(\omega, \alpha, \gamma, p_{11}, p_{12}, p_{21}, p_{22}, p_{31}, p_{32}\right)^{\prime}$ denote the model parameters. The log-likelihood function is given by

$$
L_{T}(\theta)=\sum_{t=1}^{T} \log f_{\theta}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right)
$$

Explain how you would estimate $\theta$. In particular, explain how the log-likelihood function can be evaluated.

Solution Question B.4: As the log-likelihood function is given by

$$
L_{T}(\theta)=\sum_{t=1}^{T} \log f_{\theta}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right)
$$

as usual, evaluating the log-likelihood function boils down to computing $f_{\theta}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right)$ for $t=1, \ldots, T$. This is done using a filtering algorithm. Specifically, note that

$$
f_{\theta}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right)=\sum_{i=1}^{3} f_{\theta}\left(x_{t} \mid s_{t}=i, x_{t-1}\right) P_{\theta}\left(s_{t}=i \mid x_{t-1}, \ldots, x_{0}\right),
$$

where $f_{\theta}\left(x_{t} \mid s_{t}=i, x_{t-1}\right)$ was derived in Question B.3. The predicted probabilities $P_{\theta}\left(s_{t}=i \mid x_{t-1}, \ldots, x_{0}\right)$ can be computed using a filtering algorithm. Details should be included.

